An Audit of Capacity for Prosthetic Rehabilitation after Orofacial Ablative Surgeries in Nigerian Tertiary Health Facilities

*Oluwafeyisayo Francis IKUSIKA, **Paul Ikhodaro IDON, ***Igie Michael OGBONWAN, ****Olusegun ALALADE, *Kelvin Uchenna OMEJE, ** Abdulrazak AJIYA

[Department of Restorative Dentistry, *Bayero University/Aminu Kano Teaching Hospital, Kano, Kano State, **University of Maiduguri/University of Maiduguri Teaching Hospital, Maiduguri, Borno State, ***Obafemi Awolowo University/Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun State, ***Federal University of Health Sciences/Federal University of Health Sciences Teaching Hospital, Azare, Bauchi State, *Department of Oral and Maxillofacial Surgery, Bayero University Kano/Aminu Kano Teaching Hospital Kano, **Department of Otolaryngology, Bayero University/Aminu Kano Teaching Hospital, Kano]

Correspondence

Dr Oluwafeyisayo Francis Ikusika

Department of Restorative Dentistry, Bayero University/Aminu Kano Teaching Hospital, Kano, Kano State.

Email: feyiikusika@yahoo.com

ABSTRACT

Background: The capacity for prosthodontic rehabilitation after orofacial surgeries in Nigeria has not been adequately reported. **Objectives:** To describe the capacity for, and explore avenues for improving prosthodontic rehabilitation after ablative orofacial surgeries in Nigerian tertiary healthcare facilities.

Materials and Methods: This was an electronic questionnaire survey of single representative surgeons at public tertiary facilities. Frequencies and proportions were determined for closed-ended responses. Associations between categorical variables were determined with Fischer's Exact Test, while thematic description characterized open-ended responses. The level of statistical significance was set at p≤0.05

Results: Thirty-five institutions comprising 22 Federal Teaching Hospitals (FTH)s, 11 Federal Medical Centers (FMC)s and 2 State Specialist Hospitals (SSH)s were assessed. Among the centers evaluated, there were 6 (66.7%) with prosthodontists in the South-West, while the combined South-South/South-East zone has 3 (37.9%) centers. Northern Nigeria only had 2 (11.1%) centers with prosthodontists. There were prosthodontic laboratories in 33 (94.3%) of the centers. However, only 4 (12.2%) of these laboratories had facilities for implant retained prostheses and only 2 (11.1%) had facilities for computer-aided design and manufacture. There were regular pre-surgical prosthodontic consultations in 45% of the FTHs, and 53% level of the FMCs and SSHs combined. Themes from the open-ended questions included increase in workforce numbers and workforce empowerment. They also included improved interspecialty communication and improved patient access.

Conclusion: There is a good capacity for basic prosthodontic rehabilitation after ablative surgery nationally. However, infrastructure for advanced treatments can be augmented. Capacity may be improved by increasing and empowering the workforce, and by improving interprofessional communication **Keywords**: Audit, Facial Ablative Surgery, Prosthetics

Oluwafeyisayo F. Ikusika

https://orcid.org/0000 0001 6494 1211

Paul I. Idon

https://orcid.org/0000 0002 8224 0280

Igie M.Ogbonwan

https://orcid.org/0000 0002 8062 0618

Olusegun Alalade

https://orcid.org/0000 0001 8224 0280

Kelvin U. Omeje

https://orcid.org/0000 0001 7275 1135

Abdulrazak Ajiya

https://orcid.org/0000 0002 2234 79 91

Received: 3-Jan, 2025 Revision: 23 April, 2025 Accepted: 5 May, 2025

Citation: Ikusika OF, Idon PI, Ogbonwan IM, Alalade O, Omeje KU, Ajiya A. An audit of capacity for prosthetic rehabilitation after orofacial ablative surgeries in Nigerian tertiary health facilities. Nig J Dent Res 2025; 10(2):13-20. https://dx.doi.org/10.4314/njdr.v10i2.2

INTRODUCTION

Tumors of the maxillofacial region are important public health concerns globally and constitute a significant part of oncological mortalities in Nigeria annually. 1-4 The treatments of these neoplasms may include varying combinations of surgery, radiotherapy.5 chemotherapy and Surgical treatments however, usually leave large grotesque defects. These defects may become a psychological and functional burden after diseases eradication. 6-8 The importance of health-related quality of life (HRQoL) after ablative facial surgeries is so highly regarded, that it is increasingly being viewed as a fundamental human right.8-10 The HRQoL of individuals with post-ablative facial defects can be improved with treatments that enhance appearance and oral functions. These improvements can be achieved with either surgical reconstruction or prosthetic rehabilitation or both. 11-13

Surgical reconstruction may range from simple autogenous or allogenic grafts to the employment of microvascular anastomosis of free or pedicled flaps. 14-18 These microvascular surgeries require a high level of skill and specialized infrastructure. However, surgical reconstruction may still require prosthetic rehabilitation to replace the teeth that may have been lost with the tumor. 11-13 Moreover, reconstruction may be superfluous without disease eradication, often requiring adjuvant radiotherapy. Prosthetic rehabilitation is a time-tested option in the rehabilitation of maxillofacial defects. 17The prostheses are usually removable appliances that are especially useful when there are concerns about recurrence. 17 Prostheses can often produce more predictable results when the right materials and manpower are available, and may be less expensive than microvascular surgical procedures. 18The fabrication of such prostheses is usually undertaken by a prosthodontist who works in tandem with dental technologists.

The management of the individual who has had facial ablative surgery will not be optimal if their emotions and social function are not addressed. 19-20 Their rehabilitation may require the services of a psychologist (psychiatrist) and a speech therapist. Optimal rehabilitation often requires the availability of various specialists such as prosthodontist, speech therapist, psychologist, oral and maxillofacial surgeon, plastic surgeon and otolaryngologists who will be involved in the patient's rehabilitation.

Nigerian investigators have studied the capacity for rehabilitation of individuals with ablative facial defects²¹⁻²⁴However, these studies have either been from a surgical perspective, or have been localized to only few centers. The capacity for prosthetic rehabilitation of such individuals remains largely unexplored. An initial assessment of public tertiary healthcare facilities where facial ablative surgeries are performed may provide baseline data for a more holistic investigation.

This study aimed to assess the current capacity for prosthetic rehabilitation after orofacial ablative surgeries in public tertiary healthcare facilities in Nigeria. Information derived from this study may aid in the formulation of development plans in this area of healthcare delivery and may serve as a repository for further research.

MATERIALS AND METHODS

Ethical approval (NHREC/28/01/2020 /AKTH/ EC/ 2981) was obtained from the Ethics Review Committee of a Teaching Hospital in one of the Northwestern states of Nigeria. All procedures followed the World Medical Association Declaration of Helsinki as adopted in Fortaleza, Brazil 2013. A structured electronic questionnaire (Google Forms) containing both open and closed-ended questions was piloted on a group of two maxillofacial surgeons and one otolaryngologist from three randomly selected tertiary healthcare centers known to perform facial ablative surgeries. The volunteers in the pilot certified the questionnaires to be easy to fill out and adequate for retrieving the data sought. The questionnaires sought information about institutional demographics, management protocols for cases requiring facial ablative surgeries and the human capital available for managing such cases. The questionnaires also sought information relating to the range and complexity of the rehabilitative procedures at such centers, the availability of infrastructure for radiotherapy and the level of interdisciplinary communication professionals involved in the prosthetic rehabilitation of individuals who have undergone facial ablative surgeries. The questionnaire concluded by enquiring about suggestions for improvements in the rehabilitation of individuals who require these surgeries with open-ended questions.

The study was a mixed-methods cross-sectional survey of Federal and State Government-owned tertiary health facilities in Nigeria that engage in the

performance of facial ablative surgeries. The study was carried out between May and August 2021. Nonrandom, purposive sampling was employed. Institutional information was obtained from a consenting maxillofacial surgeon or otolaryngologist in each of these institutions. The responders were individuals who actively participated in the management of orofacial tumors and they were quaranteed anonymity and confidentiality.

The country was divided into three zones for the purpose of statistical analysis. These were the Northern Zone (N Zone) comprising of the Northwest, Northeast and Northcentral Geopolitical zones, the Southwest Zone (SW Zone) made up of the eponymous geopolitical zone; and the combined Southeast and South-south Zone (SE/SS Zone) also comprising eponymous geopolitical zones. This grouping was done based on ethnocultural considerations. Retrieved data was entered into an electronic spreadsheet and analyzed with IBM SPSS Statistics for Windows (version 21). Frequencies and

proportions were determined for closed-ended responses, while responses to open ended questions were characterized by thematic description. Associations were tested with Fischer's Exact test. The level of statistical significance was set at p≤0.05.

Data was retrieved from 35 hospitals. These included 22 Federal Teaching Hospitals (FTH)s (62.9%), 11 Federal Medical Centers (FMC)s (31.4%); and, 2 State Specialist Hospitals (SSH)s (5.7%). The Northern Zone had 18 (51.4%) of the participating hospitals, the SW Zone 9 (25.7%) and the SE/SS Zone had 8 (22.9%). Most (27 or 77.1%) of the assessed centers were domiciled in urban areas while eight (22.9%) centres were located in semi-urban areas.

Most (74.3%) centers used a combination of surgical reconstruction and prosthetic rehabilitation in postoperative management. Table 1 summarizes the details of the rehabilitative modalities across the centers' demographic.

Table 1. Capacity for facial surgical defect management according to center characteristics

	Management of facial surgical defect				
Center characteristics	One of either surgical or prosthetics	Both surgical and prosthetics	<i>P</i> -value		
Center type			0.25		
FMC/SSH	2 (15.4)	11 (84.6)			
FTH	7 (31.8)	15 (68.2)			
Region			0.53		
N	6 (33.3)	12 (66.7)			
SE/SS	2 (25)	6 (75)			
SW	1 (11.1)	8 (88.9)			
Locations			0.65		
Urban	8 (29.6)	19 (70.4)			
Semi-urban/Rural	1 (12.5)	7 (87.5)			

FMC: Federal Medical Center. SSH: State Specialist Hospital.

FTH: Federal Teaching Hospital, N: North, SE: Southeast, SS: South-south, SW: Southwest.

The maxillofacial surgeons were commonly available in most of the centers. All FTHs had at least one maxillofacial surgeon, while only 86% of the FMCs and SSHs combined had at least one maxillofacial surgeon. Dental technologists were however the most common professionals at the centers that participated in the study. All the FMCs and SSHs had dental technologists while 21 (95.5%) of the FTHs had dental technologists. There were no prosthodontists at many of the centers. Prosthodontists were present in 36.4% of the FTHs and 23.1% of the FMCs and SSHs combined. The

speech therapist was the least available professional in all the centers. The FMCs and SSHs combined only had 1 speech therapist, while only 5 (22.7%) of the FTHs had a speech therapist. There was a statistically significant presence of maxillofacial surgeons in FTHs (X2=8.77, p=0.01) and in FMCs and SSHs combined (X2=5.55, p=0.04). There were no other statistically significant associations between the presence of professionals and the centers assessed. However, while there was an almost equal distribution of professionals between the Northern Zone and the two Southern Zones, the two Southern

Zones had a noticeably higher number (9) of prosthodontists than the Northern Zone (2). Details

of the workforce availability according to center characteristics are summarized in Table 2

Table 2. Distribution of specialists geographically across Nigerian tertiary centers (n=35)

		Centre demographics, n (%)					
Human resources	<u>Center ty</u>	/pe		<u>Region</u>		<u>Loca</u>	<u>tion</u>
	FMC/Specialist (n = 13)	TH (n = 22)	North (n = 18)	SE/SS (n = 8)	SW (n = 9)	Urban (n = 27)	Rural (n = 8)
Maxillofacial surgeons	10 (76.9) ∞	22 (100) ^µ	15 (83.3)	8 (100)	9 (100)	26 (96.3)	6 (75.0)
ENT surgeons	9 (62.2)	19 (86.4)	12 (66.7)	8 (100)	8 (88.9)	23 (85.2)	5 (62.5)
Plastic surgeons	7 (53.8)	17 (77.3)	12 (66.7)	5 (62.5)	7 (77.8)	20 (74.1)	4 (50.0)
Prosthodontists	3 (23.1)	8 (36.4)	2 (11.1)	3 (37-5)	6 (66.7)	10 (37)	1 (12.5)
Dental technologists	13 (100)	21 (95.5)	17(94.4)	8 (100)	9 (100)	26 (96.3)	8 (100)
Speech therapist	1 (7.7)	5 (22.7)	2 (11.1)	1 (12.5)	3 (33.3)	6 (22.2)	0(0)
Psychologist/Psychiatrist	10 (76.9)	13 (59.1)	10 (55.6)	5 (62.5)	8 (88.9)	19 (70.4)	4 (50)

 ∞ (X²=5.55, p=0.04), μ (X²=8.77, p=0.01). FMC: Federal Medical Center. SSH: State Specialist Hospital. FTH: Federal Teaching Hospital., N: North, SE: Southeast, SS: South-south, SW: Southwest.

There were dental laboratories in most of the participating centers [FMC+SSH =12(92.3%), FTH =20(95.2%)]. Majority (95% of the FTHs, 83% of FMC and SSHs combined) of these laboratories had the capacity for acrylic obturator. Only 2 (9.5%) of the FTHs had laboratories with facilities for computer-aided design and manufacture (CAD/CAM) prostheses. There was a statistically significant (X²=7.11, p=0.04) preponderance of capacity for metal ceramic work in the SW and SE/SS zones. There was a statistically significant association (X²=7.11, p=0.04) between capacity for metal ceramic prostheses and the location of the assessed centers.

The SW zone did not have a single center with CAD/CAM technology, while the N zone and SE/SS zones had one center, respectively with capacity for CAD/CAM technology. The capacity of the dental laboratories for producing prostheses of varying complexity is summarized in Table 3.

There were routine consultations between surgeons and prosthodontists in about half (17 of 35) of the participating centers. There were such consultations in 10 (45%) of the FTHs and 7 (53,8%) of the FMCs and SSHs combined. The speech therapists were consulted where they were available.

Table 3. Capacity of dental laboratories for post-ablative rehabilitation across tertiary healthcare facilities (n =33)

33/	Centre demographics, n (%)						
Capacity	Center type			<u>Region</u>	Location		
	FMC/Specialist (n = 12)	TH (n = 21)	North (n = 16)	SE/SS (n = 8)	SW (n = 9)	Urban (n = 26)	Rural (n = 7)
Maxillary obturators	10 (83.3)	20 (95.2)	14 (87.5)	7 (87.5)	9 (100)	24 (92.3)	6 (85.7)
Metal-Ceramic restoration	6 (50)	14 (66.7)	6 (37.5)	7 (87.5)	7 (77.8)	7 (65.4)	3 (42.9)
mplant- supported prosthesis	3 (25)	5 (23.8)	4 (25)	1 (12.5)	3 (33.3)	5 (19.2)	3 (42.9)
Extra oral prosthesis	1 (8.3)	3 (14.3)	1 (6.3)	0	3 (33.3)	4 (15.4)	0
CAD/CAM	0	2 (9.5)	1 (6.3)	1 (12.5)	0	1 (3.8)	1 (14.3)

FMC: Federal Medical Center. SSH: State Specialist Hospital. FTH: Federal Teaching Hospital. N: North, SE: Southeast, SS: South-south, SW: Southwest. CAD: Computer-aided design, CAM: Computer-aided manufacture

The responses to the open-ended questions seeking recommendations for improving the quality of prosthetic rehabilitation after facial ablative surgeries were in four broad themes as shown in Table 4. The most common theme was a call for increased personnel recruitment and empowerment of such personnel by institutional capacity building. Recruitment was advised to be holistic, ensuring that personnel are exposed to regular training and retraining. There was an emphasis on increasing the capacity of technologists to fabricate implant retained prostheses. Advocacy for the creation of a separate specialty of maxillofacial prosthodontics

was also discerned from the responses. Similarly, there was a call for infrastructural development especially with regards to CAD/CAM technology. The respondents also suggested the establishment of maxillofacial centers of excellence in each of the geopolitical zones. There were also calls for the formalization of meetings between surgeons and prosthodontists as a standard protocol within institutions. Finally, there was a call for the inclusion of basic maxillofacial rehabilitative procedures in the National Health Insurance scheme to increase patient access.

Table 4. Themes and codes resulting from the qualitative analysis

	Themes	Codes	Quotes
1	Personnel recruitment and capacity development	Personnel Recruitment	"Training and engagement of more prosthodontists & dental
	capacity descriptions	Specialist training	technologists." "Routine interinstitutional meetings and conferences on case reports and case managements"
2	Infrastructure development	Provision of more facilities	"More facilities for fabrication of maxillofacial prosthesis"
		More equipped laboratories	"Establish and equip more Dental Laboratories."
		Creation of regional centers	"Establish a full maxillofacial center in each geo-political zone"
3	Multidisciplinary management approach	Increased communication between surgeons and prosthodontists	"Multidisciplinary approach to patient management is strongly advised." "Having formal meetings to plan reconstruction"
4	Increased patient access	NHIS coverage of maxillofacial rehabilitation	"Incorporation of basic rehabilitation measures into NHIS-provided treatments"

NHIS: National Health Insurance Scheme

DISCUSSION

Our use of specialist surgeons as sources of data from the surveyed centers was purposive. This was undertaken because they are the most commonly available clinical specialists involved in maxillofacial surgeries, and to avoid the red tape of official bureaucracy likely to occur if information were sought from the chief executives of these institutions. We were also mindful of the risks of social desirability bias among these chief

executives. ²⁵ The use of a mixed method design was adopted to allow a reasonable measure of freedom on the part of respondents to provide suggestions that in their opinion, may lead to improved outcomes.

A British audit from 2005 reported that thirty-four centers were involved in head and neck surgery. ²⁶These figures from a first-world country are strikingly similar to the numbers we surveyed in this study. This is however, over twenty years before the

present study was undertaken. This suggests that Nigeria's maxillofacial surgery and rehabilitation infrastructure appears to lag behind Britain's, indicating a need for significant development and improvement.

Our decision to examine public healthcare facilities was informed by documented distribution patterns among health facilities in Nigeria. Makinde et al²⁷ reported a ratio of 67:33% public: private healthcare facilities within Nigeria. They also reported that only 0.25% of health facilities nationally are of a tertiary level. Facial ablative surgeries, along with the rehabilitation of their ensuing defects are a tertiary level service. Our decision to survey public health facilities was to a large extent guided by this report. There are reports that the numbers of teaching hospitals and FMCs are almost equal nationally. 28,29 the preponderance of teaching hospitals in our survey may be due to the likelihood of specialists to take up academic positions in these teaching hospitals.30 However, the factors that influence the career choices of healthcare specialists is a veritable area of research if informed decisions about tertiary healthcare provision are to be made during policy formulation.

The study observed that prosthodontic rehabilitative services are available nationally. However, access to these specialists is skewed in favor of the southern zones of the country. This may be due to the lopsidedness of medical and dental school locations in the country, as reported by Makinde et al.27 This is especially true of dental schools in Nigeria.27-31 Adebayo et al³² reported that there is a tendency for healthcare professionals to practice near where they have been trained. There may therefore be a need to strategically incentivize the specialty in the emerging dental schools in the Northern zones of the country. This study observed that prosthetic rehabilitation of post-ablative facial defects is common across the country. However, our results seem to indicate that the level of practice is still basic and limited in scope. Implantology and CAD/CAM technology are at present poorly integrated, and this may limit possibilities for maximal outcomes.33,34 The use of CAD/CAM technology would improve efficiency and permit the use of a wider range of materials for rehabilitation. It would also be a useful adjunct to craniofacial implantology.35However, the use of implantology and CAD/CAM technology are steadily increasing in the country especially in the field of fixed prosthodontics as reported by Ikusika et al.³⁰

The poor numbers of speech therapists available in the centers surveyed suggests an emphasis on structural rehabilitation to the detriment of functional rehabilitation.in many of the surveyed centers. This situation should be remedied if the provision of holistic improvements in HRQoL is to be achieved. ³⁶Speech is a significant indicator of HRQoL after ablative facial surgeries. Limitations in tissue quality and quantity after these surgeries, especially after radiotherapy may make the services of a speech therapist essential. ³⁷

The suggestions proffered by our respondents in this study could bring about positive changes in the status quo. There were suggestions for an increased workforce that should be empowered and motivated to perform at optimum capacity. There were requests for improved infrastructure and for staff development to enable optimal use of the new equipment that may be procured. There were also appeals for improved patient access to maximize the effectiveness of the improvements expected to follow the implementation of the earlier suggestions. We concur with these suggestions and would only add that a special fund should be established nationally to provide quaranteed funding for improvements in this important area of healthcare delivery.

There have been repeated calls for interdisciplinary collaboration in rehabilitating orofacial defects.^{38,39} The relatively better levels of communication between surgeons and prosthodontists in FMCs and SSHs may reflect the effect of lower levels of official bureaucracy in these centers. They are usually smaller than, and hence more compact than FTHs. The lack of specialist prosthodontists may also account for suboptimal joint consultations. However, we observed that centers where such consultations occurred were more than the reported number of prosthodontists. This may reflect the benefits of centers retaining specialists on visiting appointment basis.31We however suggest, that consideration should be given by institutions to creating statutory craniofacial rehabilitation teams to eliminate challenges of inter-unit bureaucracy.

CONCLUSION

This study found that institutions that perform facial ablative surgeries are fairly widely distributed nationally. Prosthetic rehabilitation of orofacial

defects is still at a basic level and may benefit from infrastructural and personnel advancement. Interdisciplinary communication can be improved upon especially in Federal Teaching Hospitals. The numbers and distribution of specialist prosthodontists is suboptimal and inequitable with an urgent need for increased numbers in Northern Nigeria. Speech therapists are inadequate.

Source of support Nil Conflicts of Interest:

None Declared

REFERENCES

- Gupta B, Johnson NW, Kumar N. Global epidemiology of head and neck cancers: A continuing challenge. Oncology. 2016; 91: 13-23
- Taziki MH, Fazel A, Salamat F, Sedaghai SM, Ashaari M, Poustchi H, et al. Epidemiology of head and neck cancers in Northern Iran: A 10year trend study from Golestan Province. Arch Iran Med. 2018; 21: 406-11
- 3. Erinoso OA, Okoturo E, Gbotolorun OM, Effiom OA, Awolola NA, Soyemi SS, et al. Emerging trends in epidemiological pattern of head and neck cancers in Lagos, Nigeria. Ann Med Health Sci Res. 2016; 6: 301-7
- Omitola OG, Soyele OO, Sigbeku O, Okoh D, Akinshipo AO, Butali A, et al. A multi-centre evaluation of oral cancer in Southern and Western Nigeria: An African Oral Pathology Research Consortium initiative. Pan Afr Med J. 2017; 28-64
- 5. Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Clin N Am 2015; 24:491-508.
- 6. Ali MM, Khalifa N, Alhajj MN. Quality of life and problems associated with obturators of patients with maxillectomies. Head Face Med 2018; 14:2.
- Cohen WA, Albornoz CR, Cordeiro PG, Cracchiolo J, Encarnacion E, Lee M, et al. Health-related quality of life following reconstruction for common head and neck surgical defects. Plast Reconstr Surg 2016; 138:1312-20.
- 8. Ikusika OF, Dosumu OO, Ajayi DM, Ogunrinde TJ. Effect of resilient lining of obturator bulbs on patients with maxillectomies. J Prosthet Dent 2016; 116:932-6.

- Dholam KP, Bachher G, Gurav SV. Changes in the quality of life and acoustic speech parameters of patients in various stages of prosthetic rehabilitation with an obturator after maxillectomy. J Prosthet Dent 2020; 123:355-63.
- 10. Hunt P. Interpreting the international right to health in a human rights-based approach to health. Health Hum Rights 2016; 18:109-30.
- 11. Ikusika OF, Dosumu OO, Ajayi DM, Sulaimon AO. Influence of resilient obturator material on self-reported function in individuals with maxillectomies. Niger J Restor Dent 2017; 2:21-6.
- 12. Moya-Plana A, Veyrat M, Honart JF, de Fremicourt K, Alkhashnam H, Sarfati B, et al. Reconstruction of maxillectomy and midfacial defects using latissimus dorsi-scapular free flaps in a comprehensive cancer center. Oral Oncol 2019; 99:104468.
- 13. Aparicio C, Manresa C, Francisco K, Claros P, Alández J, González-Martín O, et al. Zygomatic implants: Indications, techniques and outcomes, and the zygomatic success code. Periodontol 2000 2014; 66:41-58.
- 14. Zaid AM, Elzahaby IA, Abdallah A, Elalfy AF, Metwally IH, Said Ahmed WM, et al. Reconstruction of oromandibular defect after tumor resection by sternomastoid-clavicular flap. J Craniofac Surg 2021; 32:1845-9.
- 15. Young S, Kasper FK, Melville J, Donahue R, Athanasiou KA, Mikos AG, et al. Tissue engineering in oral and maxillofacial surgery. In: Principles of Tissue Engineering (4th Edition). Amsterdam. Elsevier Inc; p. 1487-1506
- 16. Jimson S. Residual deformities of the maxillofacial region. In: Oral and Maxillofacial Surgery for the Clinician. Singapore: Springer; 2021. p. 1303-39.
- 17. Gastaldi G, Palumbo L, Moreschi C, Gherlone EF, Capparé P. Prosthetic management of patients with oro-maxillo-facial defects: A long-term follow-up retrospective study. Oral Implantol (Rome) 2017; 10:276-82.
- 18. Sharaf MY, Ibrahim SI, Eskander AE, Shaker AF. Prosthetic versus surgical rehabilitation in patients with maxillary defect regarding the quality of life: Systematic review. Oral Maxillofac Surg 2018; 22:1-11.

- 19. Kumar P, Jain V, Thakar A. Speech rehabilitation of maxillectomy patients with hollow bulb obturator. Indian J Palliat Care 2012; 18:207-12.
- 20. Vijayabharathi P, Koli Dk, Jain V, Deo SV, Thakar A, Deb KS, et al. Clinical pilot study to evaluate the effect of prosthodontic rehabilitation on psychological status and quality of life in maxillectomy patients: An Indian experience. Indian J Otolaryngol Head Neck Surg 2021; 2: 1-9
- 21. Taiwo AO, Ibikunle AA, Braimah RO. Maxillectomy defects To reconstruct or not? Pilot survey of Nigerian oral and maxillofacial surgeons. Sahel Med J 2017; 20:123-8.
- 22. Agbara R, Obiadazie AC, Fomete B, Omeje KU. Orofacial soft tissue reconstruction with locoregional flaps in a health resource-depleted environment: Experiences from Nigeria. Arch Plast Surg 2016; 43:265-71.
- 23. Omo JO, Enabulele JE. A cross-sectional study on the assessment of the complexity of removable dental prosthesis at a tertiary hospital in Nigeria. Restor Dent Sci. 2021; 12:186-91.
- 24. Bello SA, Arigbede A, Dorgu Micah. Challenges of rehabilitation following ablative tumour surgery of oro-facial region in a developing economy. Ann of Biomed Sci. 2014 13(1): 93-101
- Densten IL, Sarros JC. The impact of organizational culture and social desirability on Australian CEO leadership. Leadersh Organ Dev 2012; 33:342-68.
- 26. Bradley PJ, Zutshi B, Nutting CM. An audit of clinical resources available for the care of head and neck cancer patients in England. J Laryngol Otol 2005; 119:620-6.
- 27. Makinde OA, Sule A, Ayankogbe O, Boone D. Distribution of health facilities in Nigeria: Implications and options for Universal health coverage. Int J Health Plann Manage 2018;33: e1179-92.
- 28. Lawal YZ, Samuel EF, Abdul MA, Abdullahi ZG, Rafindadi AL, Faruk JA, et al. Nigerian healthcare: A quick appraisal. Sahel Med J 2017; 20:79-88.
- 29. Welcome MO. The Nigerian health care system: Need for integrating adequate medical

- intelligence and surveillance systems. J Pharm Bioallied Sci 2011; 3:470-8.
- 30. Ikusika OF, Idon PI, Alalade O, Sotunde OA, Akinpelu MA, Igweagu CE. Fixed prosthodontics in Nigerian private practice settings. Ibom Med J 2022; 15:116-25.
- 31. Ikusika OF, Idon PI, Adenuga-Taiwo OA, Akinboboye BO, Omo JO, Ogunrinde TJ, et al. Learning domains and desire for specialization in prosthodontics: Survey of Nigerian final year dental students. Niger J Restor Dent 2022; 4:17-26.
- 32. Adebayo O, Omoruyi LO, Labiran A, Ebhodaghe O, Agu O, Emoekpere H, et al. Pattern of spread of medical schools in Nigeria. Dev Ctry Stud 2013; 3:160-5.
- 33. Kanathila H, Pangi A. The changing concepts in the retention of maxillofacial prostheses from past to present A review. J Evol Med Dent Sci 2017; 6:5879.
- 34. Nazar SA, Nair VV, Kumar H, Ravichandran R. Retention in maxillofacial prosthetics: A review. Int J Appl Dent Sci 2021; 7:568-73.
- 35. Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P, Koolstra JH, Forouzanfar T. Systematic review of clinical applications of CAD/CAM technology for craniofacial implants placement and manufacturing of nasal prostheses. Int J Environ Res Public Health 2021; 18:3756.
- 36. Dos Santos DM, de Caxias FP, Bitencourt SB, Turcio KH, Pesqueira AA, Goiato MC. Oral rehabilitation of patients after maxillectomy. A systematic review. Br J Oral Maxillofac Surg 2018; 56:256-66.
- 37. Zhang QZ, Chen C, Chang MB, Shanti RM, Cannady SB, O'Malley BW, et al. Oral rehabilitation of patients sustaining orofacial injuries: The U Penn Initiative. Adv Dent Res 2019; 30:50-6.
- 38. 37. Breik O, Goodrum H, Koria H, Edmondson S, Praveen P, Parmar S. Rehabilitation post maxillary and mandibular reconstruction: Current status and future approaches. Oral Oncol 2020; 105:104663.
- 39. Akinboboye BO, Adeyemi MO. Prosthetic management in orofacial trauma. Niger J Dent Maxillofac Traumatol 2019; 2:1-6